Mecanismos de fitoestimulación por rizobacterias, aislamientos en América y potencial biotecnológico

Resumen

Varias bacterias rizosféricas con potencial para estimular el crecimiento de las plantas, se han aislado de difefrentes lugares y regiones del mundo. Los mecanismos por los cuales estas bacterias tienen la capacidad de estimular el crecimiento de plantas incluyen: la producción de fitohormonas, compuestos volátiles, compuestos antimicrobianos (producción de enzimas líticas, sideróforos), fijación biológica de nitrógeno, la solubilización de fosfatos y otros. Sin embargo, estos mecanismo0s dependen de la adherencia correcta de las bacterias a las raíces de las plantas y la colonización eficaz de la rizósfera. En diferentes lugares del continente americano se han reportado varios aislamientos bacterianos con potencial para estimular el crecimiento de las plantas y algunos de ellos han sido utilizados como formulaciones de inoculantes para incrementar el rendimiento de los cultivos. Esta revisión muestra una visión global de los mecanismos de promoción de crecimiento de plantas y el potencial agrobiotecnológico de algunas rizobacterias aisladas en América.
PDF

Citas

Aguilar-Piedras J, Xique-Vásquez M, García S & Baca BE. 2008. Producción del ácido indol-3-acético en Azospirillum. Rev Latinoam Microbiol. 50: 29-37.

Ahemand M & Khan M. 2012. Alleviation of fungicide-induced phytotoxicity in greengram [Vigna radiata (L.) Wilczek] using fungicide-tolerant and plant growth promoting Pseudomonas strain. Saudi J Biol Sci. 19: 451-459.

Albareda M, Dardanelli MS, Sousa C, Megías M, Temprano F & Rodríguez-Navarro D. 2006. Factors affecting the attachment of rhizospheric bacteria to bean and soybean roots. FEMS Microbial Lett. 259: 67-73.

Annan H, Golding A, Zhao Y & Dong Z. 2012. Choice of hydrogen uptake (Hup) status in legumerhizobia symbioses. Ecol Evol. 2: 2285-2290.

Atieno M, Herrmann L, Okalebo R & Lesueur D. 2012. Efficiency of different formulations of Bradyrhizobium japonicum and effect of co-inoculation of Bacillus subtilis with two different strains of Bradyrhizobium japonicum. World J. Microbiol Biotechnol. 28(1): 2541-2550.

Babaloba OO .2010. Benefical bacteria of agricultural importance. Biotechnol Lett. 32: 1559-1570.

Bal HB, Das S, Dangar TK. & Adhya TK .2012. ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants. J Basic Microbiol. 53: 972-84.

Beneduzi A, Ambrosini A & Passaglia L .2012. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Geneti Mol Biol. 35: 1044-1051.

Bhattacharyya PN & Jha DK .2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol. 28: 1327-1350.

Bloemberg GV & Lugtenberg BJ.2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 4: 343-350.

Bordiec S, Paquis S, Lacroix H, Dhondt S, Barka EA, Kauffmann S, Jeandet P, Mazeyrat-Gourbeyre F, Clement C, Baillieul F & Dorey S. 2011. Comparative analysis of defence responses induced by the endophytic plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN and the non-host bacterium Pseudomonas syringae pv. Pisi in grapevine cell suspensions. J Exp Bot. 62: 595-603.

Caballero Mellado J. 2006. Microbiología agrícola e interacciones microbianas con plantas, Rev Latinoam Microbiol. 48: 154-161.

Caballero Mellado J, Onofre Lemus J, Estrada-de los Santos P & Martínez Aguilar L. 2007. The tomato Rhizosphere, an Environment Rich in Nitrogen-Fixing Burkholderia Species with Capabilities of Interest for Agriculture and Bioremediation. Appl Environ Microbiol. 73: 5308-5319

Caballero-Mellado J, Martínez-Aguilar L, Paredes-Valdez G & Estrada-de los Santos P .2004. Burkholderia unamae sp. Nov., an N2-fixing rhizospheric and endophytic species. Int J Syst Evol Microbiol. 54: 1165–1172.

Calvo P, Ormeño-Orillo E, Martinez-Romero E & Zuñiga D .2010. Characterization Of Bacillus Isolates Of Potato Rhizosphere From Andean Soils Of Peru And Their Potential PGPR Characteristics. Braz J Microbiol. 41: 899-906.

Camelo M, Vera SP & Bonilla R .2011. Mecanismos de acción de las rizobacterias promotoras del crecimiento vegetal. Rev Corpoica–Cien y Tec Agropecuaria, 12: 159-166.

Cárdenas-Caro DM, Garrido-Rubiano MF; Roncallo-Fandiño BA & Bonilla-Buitrago RR .2014. Inoculation with Azospirillum spp and Enterobacter aglomerans in Guinea Grass (Panicum maximum Jacq.) in the Cesar Department (Colombia) Rev.Fac.Nal.Agr.Medellín 67: 7271-7280.

Castagno LN, Estrella MJ, Sannazzaro Al, Grassano A & Ruiz OA .2011. Phosphate-solubilization mechanism and in vitro plant growth promotion activity mediated by Pantoea eucalypti isolated from Lotus tenuis rhizosphere in the Salado River Basin (Argentina). J Appl Microbiol. 110: 1151-1165.

Castro-Sowinski S, Herschkovitz Y, Okon Y & Jurkevitch E .2007. Effects of inoculation with plant growth-promoting rhizobacteria on resident rhizosphere microorganisms. FEMS Microbiol Lett. 276: 1-11.

Couillerot O, Ramírez-Trujillo A, Walker V., von Felten A, Jansa J., Maurhofer M., Défago G, Prigent-Combaret C, Comte G, Caballero-Mellado J & Moënne-Loccoz Y .2013. Comparison of prominent Azospirillum strains in Azospirillum–Pseudomonas–Glomus consortia for promotion of maize growth, Appl Microbiol Biotechnol, 97: 4639-4649.

Delgadillo RJ, Calleros GV, Franco ST & Portugal VO. 2001. Bacterias promotoras del crecimiento de plantas: agro-biotecnología. Avance y Perspectiva. 20: 395-400.

Do Carmo FL, dos Santos HF, Martins EF, Van Elsas JD, Rosado AS & Peixoto RS .2011. Bacterial Structure and Characterization of plant Growth Promoting and Oil Degrading Bacteria from the Rhizospheres of Mangrove Plants. J Microbiol. 49: 535-543.

Drogue B, Doré H, Borland S, Wisniewski-Dyé F & Prigent-Combaret C .2012. Which specificity in cooperation between phytostimulating rhizobacteria and plants?. Res Microbiol. 163: 500-510.

Eckert B, Weber OB, Kirchhof G, Halbritter A, Stoffels M & Hartmann A .2001. Azospirillum doebereinerae sp. Nov., a nitrogen-fixing bacterium associated with the C4 – grass Miscanthus. Int J Syst Evol Microbiol. 51: 17-26.

Estrada-De los Santos P, Bustillos-Cristales R & Caballero-Mellado J .2001. Burkholdeira, a Genus Rich in Plant-Associated Nitrogen Fixers with Wide Environmental and Geographic Distribution. Appl Environ Microbiol. 67: 2790-2798.

Farag MA, Zhang H & Ryu CM .2013. Dynamic Chemical Communication between Plants and Bacteria through Airborne Signals: Induced Resistance by Bacterial Volatiles. J Chen Ecol, 39: 1007-1018.

Fasciglione G, Casanovas EM, Yommi A, Sueldo R & Barassi CA .2012. Azospirillum improves lettuce growth and transplant under saline conditions. J Sci Food Agric. 92: 2518-2523.

Fernández-Aunión C, Hamouda TB, Iglesias-Guerra F, Argandoña M, Reina-Bueno M, Nieto JJ, Aouani ME & Vargas C .2010. Biosynthesis of compatible solutes in rhizobial strains isolated from Phaseolus vulgaris nodules in Tunisian fields. BMC Microbiol. 10: 192.

Fibach-Paldi S, Burdman S & Okon Y .2012. Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense. FEMS Microbiol Lett. 326:99-108.

Fuentes-Ramírez LE, Jiménez-Salgado T, Abarca-Ocampo IR & Caballero-Mellado J .1993. Acetobacter diazotrophicus, and indol acetic acid producing bacterium isolated from sugarcane cultivars of Mexico. Plant Soil. 154: 145-150.

Fuentes-Ramírez LE & Caballero-Mellado J. 2005. Bacterial Biofertilizers. In: PGPR: Biocontrol and Biofertilization. Z.A. Siddiqui (Ed). Springer Science. Dordrecht The Netherlands. 143-172.

Fuentes-Ramirez LE, Bustillos-Cristales R, Tapia-Hernandez A, Jiménez-Salgado T, Wang E, Martínez-Romero E & Caballero-Mellado J .2001. Novel nitrogen-fixing acetic acid bacteria, Gluconacetobacter johannae sp. Nov. and Gluconacetobacter azotocaptans sp. Nov., associated with coffee plants. Int J Syst Evol Microbiol. 51: 1305-1314.

Gómez-Luna BE, Hernández-Morales A, Hernán Herrera-Méndez CH, Arroyo-Figueroa G, Lorena Vargas-Rodríguez L & Olalde-Portugal V .2012. Isolation of plant growth promoting rhizobacteria of guava plants (Psidium guajava). Ximhai. 8: 97-102.

Guzmán A, Obando M, Rivera D & Bonilla R. 2012. Selección y caracterización de rizobacterias promotoras de crecimiento vegetal (RPCV) asociadas al cultivo de algodón (Gossypium hirsutum). Rev. Colomb. Biotecnol. 14: 182-190.

Jha CK, Patel B & Saraf M .2012. Stimulation of growth of Jatropha curcas by the plant growth promoting bacterium Enterobacter cancerogenus MSA2. World J Microbiol Biotechnol. 28: 891-899.

Jimenez-Salgado T, Fuentes-Ramírez LE, Tapia-Hernández A, Mascarua-Esparza MA, Martinez-Romero E & Caballero-Mellado J .1997. Coffea Arabica L., a new host plant for Acetobacter diazotrophicus, and isolation of other nitrogen-fixing acetobacter. Appl Environ Microbiol. 63: 3676-3683.

Jorquera MA, Shaharoona B, Nadeem SM, de la Luz Mora M & Crowley DE .2012. Plant Growth-Promoting Rhizobacteria Associated with Ancient Clones of Creosote Bush (Larrea tridentata). Microb Ecol. 64: 1008-1017.

Kamilova F, Kravchenko LV, Shaposhnikov Al, Azarova T, Makarova N & Lugtenberg B .2006. Organic Acids, Sugars, and L-Tryptophane in Exudates of Vegetables Growing on Stonewool and Their Effects on Activities of Rhizosphere Bacteria. Mol Plant Microbe Interact. 19. 250-256.

Kannan RR & Prakash VS .2011. Molecular Characterizacion of antagonistics Streptomyces isolates from a Manglove swamp. Asian J Biotechnol. 3: 237:245.

Kang SM, Khan AL, You YH, Kim JG, Kamran M & Lee IJ .2013. Gibberellins Production by newly isolated strain of Leifsonia 1 soli SE134 and its potential for plant growth promotion. J Microbiol Biotechnol. 24:106-12.

Kavamura VN, Santos SN, Silva JL, Parma MN, Ávila LA, Visconti A, Zucchi TD, Taketani RG, Andreote FD & Melo IS .2012. Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought. Microbiol Res. 168: 183-191.

Kloepper JW & Schroth MN.1978. Plant growth-promoting rhizobacteria on radishes. In: Proc. Internat. Conf. Plant Pathog. Bact. 2: 879–882.

Lucas JA, García-Villaraco A, García-Cristobal J, Algar E & Gutierrez-Mañero J .2013. Structural and functional study in the rhizosphere of Oryza sativa L. plants growing under biotic and abiotic stress. J Appl Microbiol. 115: 218-235.

Lugtenberg B & Kamilova F .2009. Plant-Growth-Promoting Rhizobacteria. Annu Rev Microbiol. 63: 541-556.

Malik DK & Sindhu SS. 2011. Production of indole acetic acid by Pseudomonas sp.: effect of coinoculation with Mesorhizobium sp. Cicer on nodulation and plant growth of chickpea (Cicer arietinum). Physiol Mol Biol Plants. 17: 25-32.

Marín-Cevada V, Muñoz-Rojas J, Caballero-Mellado J, Mascarúa-Esparza MA Castañeda-Lucio M, Carreño-López R, Estrada-de los Santos P & Fuentes-Ramírez LE. 2012. Antagonistic interactions among bacteria inhabiting pineapple. Appl Soil Ecol. 61: 230-235.

Marks BB, Magías M, Nogueira MA & Hungria M. 2013. Biotechnological potential of rhizobial metabolites to enhance the performance of Bradyrhizobium spp. and Azospirillum brasilense inoculants with soybean and maize. AMB Express. 3:1-20. 62.

Morales-García YE, Herrera MC, Muñoz-Rojas J.2007. Cloranfenicol, un antibiótico clásico como alternativa en el presente. Rev. Mexicana C Farmacéuticas. 38: 58-69.

Morales-García YE, Juárez-Hernández D, Aragón-Hernández C, Mascarua-Esparza MA, Bustillos-Cristales MR, Fuentes-Ramírez LE, Martínez-Contreras RD, Muñoz-Rojas J. 2011. Growth response of maize plantlets inoculated with Enterobacter spp., as a model for alternative agricultura. Rev Argent Microbiol. 43: 287-293.

Muñoz-Rojas J & Caballero-Mellado J. 2003. Population Dynamics of Gluconacetobacter diazotrophicus in Sugarcane Cultivars and Its Effect on Plant Growth. Microb Ecol. 46: 454-464.

Muñoz-Rojas J, Fuentes-Ramírez LE & Caballero-Mellado J.2005. Antagonism among Gluconacetobacter diazotrophicus strains in culture media and in endophytic association. FEMS Microbiol Ecol. 54: 57–66.

Oliveira ALM, Stoffels M, Schmid M, Reis VM, Baldani JI & Hartmann A. 2009. Colization of sugarcane plantlets by mixed inoculations with diazotrophic bacteria. Eur J Soil Bioly. 45: 106-113.

Onofre-Lemus J, Hernández-Lucas I, Girard L & Caballero-Mellado J. 2009. ACC (1-Aminocyclopropane-1-Carboxylate) Deaminase Activity, a Widespread Trait in Burkholderia Species, and Its Growth-Promoting Effect on Tomato Plants. Appl Environ Microbiol. 75: 6581-6590.

Ortíz-Castro R, Contreras-Cornejo HA, Macías-Rodríguez L & López-Bucio J . 2009. The role of microbial signals in plant growth and development. Plant Signal Behav. 4: 701-712.

Park HB, Lee B, Kloepper JW & Ryu CM. 2013. Exposure of Arabidopsis to hexadecane, a long chain volatile organic compound, confers induced resistance against both Pectobacterium carotovorum and Pseudomonas syringae. Plant Signal Behav. 8: 24619-1-24619-3.

Perin L, Martínez-Aguilar L, Castro-Gonzáles R, Estrada-de los Santos P, Cabellos-Avelar T, Guedes HV, Reis VM & Caballero-Mellado J. 2006. Diazotrophic Burkholderia Species Associated with Field-Grown Maize and Sugarcane. Appl Environ Microbiol. 72: 3103-3110.

Perin L, Martínez-Aguilar L, Paredes-Valdez G, Baldani JI, Estrada-de los Santos P , Reis VM & Caballero-Mellado J. 2005. Burkholderia silvatlantica sp. nov., a diazotrophic bacterium associated with sugar cane and maize. Int J Syst Evol Microbiol. 56: 1931-1937.

Poupin MJ, Timmermann T, Vega A, Zuñiga A & González B. 2013. Effects of the Plant Growth-Promoting Bacterium Burkholderia phytofirmans PsJN throughout the Life Cycle of Arabidopsis thaliana. PLos One 8: 69435-1-694351-15.

Rajkumar M, Sandhya S, Prasas MN & Freitas H. 2012. Perspectives of plant-asociated microbes in heavy metal phytoremediation. Biotechnol Adv. 30: 1562-1574.

Reis VM, Estrada-de los Santos P, Tenorio-Salgado S, Vogel J, Stoffels M, Guyon S, Mavingui P, Baldani JI, Schmid M, Baldani J, Balandreau J, Hartmann A & Caballero-Mellado J. 2004. Burkholderia tropica sp. Nov., a novel nitrogen-fixing plant-associated bacterium. Int J Syst Evol Microbiol. 54: 2155-2162.

Reyes I, Alvarez L, El-Ayoubi H & Valery A. 2008.Selección y evaluación de rizobacterias promotoras del crecimiento en pimentón y maíz. Biagro. 20: 37-48.

Robles C & Barea JM. 2004. Respuesta de la planta y del suelo a inoculación con Glomus intraradices y rizobacterias en maíz en cultivo intensivo. TERRA Latinoamericana. 22: 59-69.

Rodríguez H, Fraga R, González T & Bashan Y. 2006. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil. 287: 15-21.

Rumjanek NG, Dobert RC, van Berkum P & Tripletfv EW.1993. Common Soybean inoculant starins in Brazil Are Members of Bradyrhizobium elkanii. Appl Environ Microbiol. 59: 4371-4373.

Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW & Paré PW. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134: 1017-1026.

Saleem M, Arshad M, Hussain S & Bhatti AS. 2007. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol. 34: 635-648.

Santi C, Bogusz D & Franche C.2013. Biological nitrogen fixation in non-legume plants. Ann Bot. 111: 743-767.

Saravanan VS, Madhaiyan M, Osborne J, Thangaraju M & Sa TM. 2008. Ecological Ocurrence of Gluconacetobacter diazotrophicus and Nitrogen-fixing Acetobacteraceae Members: Their possible role in plant Growth Promotion. Microb Ecol. 55:130-140.

Shen M, Jun-Kang Y, Li-Wang H, Sheng-Zhang X & Xin-Zhao Q. 2012. Effect of plant Growth-promoting Rhizobacteria (PGPRs) on plant growth, yield, and quality of tomato (Lycopersicon esculentum Mill.) under simulated seawater irrigation. J. Gen. Appl. Microbiol. 58: 253-262.

Stearns JC, Woody OZ, McConkey BJ & Glick BR. 2012. Effects of Bacterial ACC Deaminase on Brassica napus Gene Expression. Mol Plant Microbe Interct. 25: 668-676.

Suman A, Shrivastava AK, Gaur A, Singh P, Singh J & Yadav R. 2008. Nitrogen use efficiency of sugarcane in relation to its BNF potential and population of endophytic diazotrophs at different N levels. Plant Growth Regul. 54:1-11.

Sunar K, Dey P, Chkraborty U & Chakreborty B. 2013. Biocontrol efficacy and plant growth promoting activity of Bacillus altitudinis isolated from Darjeeling hills. J Basic Microbiol. 10: 1002-1014.

Tenorio-Salgado S, Tinoco R, Vazquez-Duhalt R, Caballero-Mellado J & Pérez-Rueda E. 2013. Identification of volatile compounds produced by the bacterium Burkholderia tropica that inhibit the growth of fungal pathogens. Bioengineered. 4: 236-243.

Vacheron J, Desbrosses G, Bouffaud ML, Moënne-Loccoz Y, Touraine B, Muller D, Legendre L, Wisniewski-Dye F & Pringent-Combaret C. 2013. Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci. 356: 33891-3389-19.

Van Loon LC. 2007. Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol. 119: 243-254.

Vilchez S & Manzanera M. 2011. Biotechnological uses of desiccation-tolerant microorganisms for the rhizoremediation of soils subjected to seasonal drought. Appl Microbiol Biotechnol. 91:1297-1304.

Valery A & Reyes I. 2013. Evaluation of growth promoting rhizobacteria under different fertilization schemes in maize variety HIMECA-95. Rev. Colomb. Biotecnol. 2: 80-88

Vyas P & Gulati A. 2009. Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol. 9: 174-189.

Zhang H, Kim MS, Krishnamachari V, Payton P, Sun Y, Grimson M, Farag MA, Ryu CM, Allen R, Melo IS & Paré PW. 2007. Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Plant. 226: 839-851.

Zhang H, Sun Y, Xie X, Kim MS, Dowd SE & Pare PW. 2009. A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant J. 58: 568–577.

Zhu XF, Zhou Y & Feng JL. 2007. Analysis of both chitinase and chitosanase produced by Sphingomonas sp. CJ-5. J Zhejiang Univ Sci B. 8: 831-838.