Funciones de las proteínas cinasas activadas por mitógenos en la transducción de señales durante el desarrollo de las plantas.
PDF

Palabras clave

Plantas
desarrollo
señalización celular
hormonas
fosforilación.

Resumen

Las proteínas cinasas activadas por mitógenos (MAPKs) forman parte de módulos de señalización que integran respuestas extra e intra-celulares a través de la fosforilación de diferentes substratos. Dichos módulos influencian la actividad de factores de transcripción para regular la expresión genética y procesos fundamentales durante el desarrollo de las plantas. Si bien las primeras investigaciones en este campo estuvieron encaminadas a esclarecer la participación de las MAPKs en respuestas de defensa y agobio ambiental, en la actualidad se les ha involucrado en la germinación, la configuración de la arquitectura de la raíz, la formación de estomas, la floración y la senescencia. Particularmente, en la planta modelo Arabidopsis thaliana se han identificado y clasificado 90 MAPKs, lo que sugiere una fuerte redundancia funcional y plantea el reto de dilucidar el posible el papel que desempeña cada miembro de esta familia en los diferentes procesos de organogénesis. En este artículo se analizan las investigaciones enfocadas a esclarecer la participación de las MAPKs durante el desarrollo vegetal.

PDF

Citas

Referencias

Bergmann DC, Lukowitz W, Somerville CR. 2004. Stomatal development and pattern controlled by a MAPKK kinase. Science 304: 1494-1497.

Bush SM, Krysan PJ. 2007. Mutational evidence that the Arabidopsis MAP kinase MPK6 is involved in anther, inflorescence, and embryo development. J. Exp. Bot. 58: 2181-2191.

Butenko MA, Patterson SE, Grini PE, Stenvik GE, Amundsen SS, Mandal A, Aalen RB. 2003. Inflorescence deficient in abscission controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants. Plant Cell 15: 2296-2307.

Chang L, Karin M. 2001. Mammalian MAP kinase signaling cascades. Nature 410: 37-40.

Cho SK, Larue CT, Chevalier D, Wang H, Jinn T-L, Zhang S, Walker JC. 2008. Regulation of floral organ abscission in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 105: 15629-15634.

Contreras-Cornejo HA, López-Bucio JS, Méndez-Bravo A, Macías-Rodríguez L, Ramos-Vega M, Guevara García AA, López-Bucio J. 2015. Mitogen-activated protein kinase 6 and ethylene and auxin signaling pathways are involved in Arabidopsis root-system architecture alterations by Trichoderma atroviride. Molecular Plant Microbe Interact. 28: 701-710.

Costa LM, Marshall E, Tesfaye M, Silverstein KA, Mori M, Umetsu Y, Otterbach SL, Papareddy R, Dickinson HG, Boutiller K, VandenBosch KA, Ohki S, Gutierrez JF. 2014. Central cell-derived peptides regulate early embryo patterning in flowering plants. Science 344: 168-172.

Dai Y, Wang H, Li B, Huang J, Liu X, Zhou Y, Mou Z, Li J. 2006. Increased expression of MAP KINASE KINASE7 causes deficiency in polar auxin transport and leads to plant architectural abnormality in Arabidopsis. Plant Cell 18: 308-320.

Forde BG, Cutler SR, Zaman N, Krysan PJ. 2013. Glutamate signalling via a MEKK1 kinase-dependent pathway induces changes in Arabidopsis root architecture. Plant J 75: 1-10.

Gruber BD, Giehl RFH, Friedel S, von Wirén N. 2013. Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol. 163: 161-179.

Guan Y, Meng X, Khanna R, LaMontagne E, Liu Y, Zhang S. 2014. Phosphorylation of a WRKY transcription factor by MAPKs is required for pollen development and function in Arabidopsis. PLOS Genet. 10: 1-12.

Guan Y, Lu J, Xu J, McClure B, Zhang S. 2014. Two mitogen-activated protein kinases, MPK3 and MPK6, are required for funicular guidance of pollen tubes in Arabidopsis. Plant Physiol. 165: 528-533.

Hara K, Kajita R, Torii KU, Bergmann DC, Kakimoto T. 2007. The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule. Genes Dev 21: 1720-1725.

Hunt L, Gray JE. 2009. The signaling peptide EPF2 controls asymmetric cell divisions during stomatal development. Curr. Biol. 19: 864-869.

Ichimura K, Shinozaki K, Tena G, Sheen J, Henry Y, Champion A, Kreis M, Zhang S, Hirt H, Wilson C, Heberle-Bors E, Ellis B. E, Morris PC, Innes RW, Ecker JR, Scheel D, Klessig DF, Machida Y, Mundy J, Ohashi Y, Walker JC. 2002. Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci. 7: 301-308.

Jinn TL, Stone JM, Walker JC. 2000. HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission. Genes Dev. 14: 108-117.

Lampard GR, Macalister CA, Bergmann DC. 2008. Arabidopsis stomatal initiation is controlled by MAPK-mediated regulation of the bHLH SPEECHLESS. Science 322: 1113-1116.

López-Bucio J, Hernández-Abreu E, Sánchez-Calderón L, Nieto-Jacobo MF, Simpson J, Herrera-Estrella L. 2002. Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol. 129: 244-256.

López-Bucio JS, Dubrovsky JG, Raya J, Ugartechea C, López J, Luna LA, Ramos M, León P, Guevara AA. 2014. Arabidopsis thaliana mitogen-activated protein kinase 6 is involved in seed formation and modulation of primary and lateral root development. J. Exp. Bot. 65: 169-183.

Lukowitz W, Roeder A, Parmenter D, Somerville C. 2004. A MAPKK kinase gene regulates extra-embryonic cell fate in Arabidopsis. Cell 116: 109-119.

MacAlister CA, Ohashi-Ito K, Bergmann DC. 2007. Transcription factor control of asymmetric cell divisions that establish the stomatal lineage. Nature 445: 537-540.

McCarty DR, Chory J. 2000. Conservation and innovation in plant signaling pathways. Cell 103: 201-209.

Meng X, Wang H, He Y, Liu Y, Walker JC, Torii KU, Zhang S. 2012. A MAPK cascade downstream of ERECTA receptor-like protein kinase regulates Arabidopsis inflorescence architecture by promoting localized cell proliferation. Plant Cell 24: 4948-4960.

Miao Y, Laun TM, Smykowski A. 2007. Arabidopsis MEKK1 can take a short cut: it can directly interact with senescence-related WRKY53 transcription factor on the protein level and can bind to its promoter. Plant Mol. Biol. 65: 63-76.

Miao Y, Smykowski A, Zentgraf U. 2008. A novel upstream regulator of WRKY53 transcription during leaf senescence in Arabidopsis thaliana. Plant Biol. 10: 110-120.

Müller J, Beck M, Mettbach U, Komis G, Hause G, Menzel D, Samaj J. 2009. Arabidopsis MPK6 is involved in cell division plane control during early root development, and localizes to the pre-prophase band, phragmoplast, trans-Golgi network and plasma membrane. Plant J.: 1-15.

Nadeau JA, Sack FD. 2002. Control of stomatal distribution on the Arabidopsis leaf surface. Science 296: 1697-1700.

Ortíz-Castro R, Díaz-Pérez C, Martínez-Trujillo M, del Río RE, Campos-García J, López-Bucio J. 2011. Transkingdom signaling based on bacterial cyclodipeptides with auxin activity in plants. Proc. Natl. Acad. Sci. USA 108: 7253-7258.

Pawson T, Scott JD. 2005. Protein phosphorylation in signaling – 50 years and counting. Trends Biochem. Sci. 30: 286-290.

Pearson G, Robinson F, Gibson TB, Xu BE, Karandikar M, Berman K, Cobb MH. 2001. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocrine Rev. 30: 153-183.

Pillitteri LJ, Bemis SM, Shpak ED, Torii KU. 2007. Haploinsufficiency after successive loss of signaling reveals a role for ERECTA-family genes in Arabidopsis ovule development. Development 134: 3099-3109.

Rossomando AJ, Payne DM, Weber MJ, Sturgill TW. 1989. Evidence that pp42, a major tyrosine kinase target protein, is a mitogen-activated serine/threonine protein kinase. Proc. Natl. Acad. Sci. USA 86: 6940-6943.

Shpak ED, McAbee JM, Pillitteri LJ, Torii KU. 2005. Stomatal patterning and differentiation by synergistic interactions of receptor kinases. Science 309: 290-293.

Smékalová V, Luptovciak I, Komis G, Samajová O, Ovecka M, Doskocilova A, Takác T, Vadovic P, Novák O, Pechan T, Ziemann A, Kosútová P, Samaj J. 2014. Involvement of YODA and mitogen activated protein kinase 6 in Arabidopsis post-embryogenic root development through auxin up-regulation and cell division plane orientation. New Phytol. 203: 1175-1193.

Smertenko AP, Chang HY, Sonobe S, Fenyk SI, Weingartner M, Bogre L, Hussey PJ. 2006. Control of the AtMAP65-1 interaction with microtubules through the cell cycle. J. Cell Sci. 119: 3227-3237.

Sozzani R, Iyer-Pascuzzi A. 2014. Postembryonic control of root meristem growth and development. Curr. Opin. Plant Biol. 17: 7-12.

Su SH, Suarez MC, Krysan P. 2007. Genetic interaction and phenotypic analysis of the Arabidopsis MAP kinase pathway mutations mekk1 and mpk4 suggests signaling pathway complexity. FEBS Lett. 581: 3171-3177.

Tena G, Asai T, Chiu WL, Sheen J. 2001. Plant mitogen-activated protein kinase signaling cascades. Curr. Opin. Plant Biol. 4: 392-40.

Torii KU, Mitsukawa N, Oosumi T, Matsuura Y, Yokoyama R, Whittier RF, Komeda Y. 1996. The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell 8: 735-746.

Turjanski AG, Vaque JP, Gutkind JS. 2007. MAP kinases and the control of nuclear events. Oncogene 26: 3240-3253.

Uchida N, Lee JS, Horst RJ, Lai HH, Kajita R, Kakimoto T, Tasaka M, Torii KU. 2012. Regulation of inflorescence architecture by inter-tissue layer ligand-receptor communication between endodermis and phloem. Proc. Natl. Acad. Sci. USA 109: 6337-6342.

Wang H, Liu Y, Bruffett K, Lee J, Hause G, Walker JC, Zhang S. 2008. Haplo-insufficiency of MPK3 in MPK6 mutant background uncovers a novel function of these two MAPKs in Arabidopsis ovule development. Plant Cell 20: 602-613.

Wang H, Ngwenyama N, Liu Y, Walker JC, Zhang S. 2007. Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell 19: 63-73.

Xu J, Zhang S. 2015. Mitogen-activated protein kinase cascades in signaling plant growth and development. Trends Plant Sci. 20: 56-64.

Yang KY, Liu Y, Zhang S. 2001. Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proc. Natl. Acad. Sci. USA 98: 741-746.

Zhou C, Cai Z, Guo Y, Gan S. 2009. An Arabidopsis mitogen-activated protein kinase cascade, MKK9-MPK6, plays a role in leaf senescence. Plant Physiol. 150: 167-177.