Importancia de los taninos en especies del género <I>Quercus</I> como metabolitos secundarios asociados a defensa contra insectos herbívoros

Palabras clave

defensa química


Las plantas presentan una gran diversidad de metabolitos secundarios los cuales utilizan como defensa contra insectos herbívoros. Los encinos se caracterizan por presentar altas concentraciones de diversos compuestos fenólicos, particularmente taninos hidrolizables o condensados. Los taninos tienen la capacidad de precipitar e inactivar proteínas y enzimas afectando la nutrición, el crecimiento y el desarrollo de insectos herbívoros. Se conoce que los encinos presentan una alta tasa de hibridación natural, siendo este un factor que influye en la variación de la defensa química afectando la estructura de la comunidad de insectos herbívoros. El papel principal de los taninos dentro de las interacciones planta-insecto en los encinos podría ser de defensa contra herbívoros, aunque se han reportado efectos variados de estos sobre los insectos herbívoros. Estudios recientes sugieren un papel central de los taninos hidrolizables en la defensa química en conjunto con los taninos condensados, ya que producto de la oxidación de los taninos hidrolizables se generan especies reactivas de oxígeno (ERO), lo cual representa un mecanismo de defensa contra insectos herbívoros. El objetivo de este artículo es el analizar y discutir la importancia de la defensa química de los taninos en encinos sobre la incidencia de insectos herbívoros como un posible mecanismo de defensa química.



Agrawal AA, Hastings AP, Johnson MTJ, Maron JL, Salminen JP (2012) Insect herbivores drive real-time ecological and evolutionary change in plant populations. Science 338: 113–116.

Ananthakrishnan TN (1999) Induced responses, signal diversity and plant defense: implications in insect phytophagy. Curr. Sci. 76: 285–290.

Anaya AL (2003) Ecología Química. Plaza y Valdés Editores, Instituto de Ecología, UNAM, México. 349 p.

Appel HM (1993) Phenolics in ecological interactions: the importance of oxidation. Journal of Chemical Ecology 19: 1521–1552.

Arámbula-Salazar JA, Ibarra-Salinas BI, González-Laredo RF, Muñoz- Galindo OD, Hernández-Vela H (2010) Seasonal variation in the phenolic content of oak leaves (Quercus sideroxyla) in different soil textures. Madera y Bosques 16: 49–59.

Arango AGJ (2008) Alcaloides y compuestos nitrogenados. Universidad de Antioquía. Facultad de Química Farmacéutica. Medellín, Colombia, pp 31-32.

Arnold T, Targett N (2002) Marine tannins: the importance of mechanistic framework for predicting ecological roles. Journal of Chemical Ecology 28: 1919–1934.

Arnold TM, Schultz JC (2002) Induced sink strength as a prerequisite for induced tannin biosynthesis in developing leaves of Populus. Oecologia 130: 585–593.

Aron PM, Kennedy JA (2008) Flavan-3-ols: nature, occurrence and biological activity. Mol. Nutr. Food Res. 52: 79–104.

Asquith TN, Butler LG (1986) Interactions of condensed tannins with selected proteins. Phytochemistry 25: 1591–1593

Ayres M, Clausen TP, MacLean SF, Redman AM, Reichardt PB (1997) Diversity of structure and antiherbivore activity in condensed tannins. Ecology 78: 1696–1712

Barbehenn RV, Cheek S, Gasperut A, Lister E, Maben R (2005) Phenolic compounds in red oak and sugar maple leaves have prooxidant activities in the midguts of Malacosoma disstria and Orgyia leucostigma caterpillars. Journal of Chemical Ecology 31: 969–988.

Barbehenn RV, Constabel PC (2011) Tannins in plant-herbivore interactions. Phytochemistry 72: 1551–1565.

Barbehenn RV, Jaros A, Lee G, Mozola C, Weir Q, Salminen JP (2009) Hydrolysable tannins as ‘‘quantitative defenses’’: limited impact against Lymantria dispar caterpillars on hybrid poplar. J Insect Physiol 55: 297–304.

Barbehenn RV, Jones CP, Hagerman AE, Karonen M, Salminen JP (2006a) Ellagitannins have greater oxidative activities than condensed tannins and galloyl glucoses at high pH: potential impact on caterpillars. J Chem Ecol 32: 2253-2267. doi:10.1007/s10886-006-9143-7

Barbehenn RV, Jones CP, Karonen M, Salminen JP (2006b) Tannin composition affects the oxidative activities of tree leaves. J Chem Ecol 32: 2235-2251. doi:10.1007/s10886-006-9142-8

Barbehenn RV, Martin MM (1994) Tannin sensitivity in larvae of Malacosoma disstria (Lepidoptera): roles of the peritrophic envelope and midgut oxidation. J Chem Ecol 20: 1985-2001. doi:10.1007/BF02066238

Barbehenn RV, Weir Q, Salminen JP (2008) Oxidation of ingested phenolics in the tree-feeding caterpillar Orgyia leucostigma depends on foliar chemical composition. J Chem Ecol 34: 748-756. doi:10.1007/s10886-008-9478-3

Bass WJ (1989) Secondary plant compounds, their ecological significance and consequences for the carbon budget. Introduction to the carbon-nutrient cycle theory. In H Lambers, ML Cambridge, H Konings, TL Pons (eds), Causes and consequences of variation in growth rate and productivity of higher plants. SPB Academic Publishing, The Hague, pp 313–340.

Begon M, Harper JL, Townsend CR (1990) Ecology: Individuals, Populations and Communities. Blackwell Scientific Publications, Boston, Massachusetts, USA.

Bernays EA, Chamberlain D, Mccarthy P (1980) The differential effects of ingested tannic acid on different species of Acridoidea. Entomol Exp Appl 28: 158–166

Bernays EA, Howard JJ, Champagne D, Estesen BJ (1991) Rutin: a phagostimulant for the polyphagous acridid Schistocerca americana. Entomol Exp Appl 60: 19–28

Bettolo GBM, Marta M, Pomponi M, Bernays EA (1986) Flavan oxygenation pattern and insect feeding deterrence. Biochemical Systematics and Ecology 14: 249–250.

Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, . . . Chalwatzis N (1998) Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391: 485-488

Cheng D, Vrieling K, Klinkhamer PGL (2011) The effect of hybridization on secondary metabolites and herbivore resistance: implications for the evolution of chemical diversity in plants. Phytochem Rev 10: 107–117

Clausen TP, Pruenza FD, Burritt EA, Reichardt PB, Bryant JP (1990) Ecological implications of condensed tannin structure: a case study. Journal of Chemical Ecology 16: 2381–2392.

Close DC, McArthur C (2002) Rethinking the role of many plant phenolics: protection from photodamage not herbivores? Oikos 99: 166–172.

Coley PD, Bryant JP, Chapin FS (1985) Resource availability and plant antiherbivore defense. Science 230: 895–899.

Coley PD (1983) Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecological Monographs 53: 209–233.

Connolly JD, Hill RA (2001) Dictionary of Terpenoids. 3 vol. Vol.1: Mono- and sesquiterpenoids. Vol.2: Di- and higher Terpenoids.Vol.3: Indexes.

De Luca V, St Pierre B (2000) The cell and developmental biology of alkaloid biosynthesis. Trends in Plant Science 5: 168-173. doi:10.1016/S1360-1385(00)01575-2

Dixon RA, Xie DY, Sharma SB (2005)Proanthocyanidins: a final frontier in flavonoid research? New Phytolologist 165: 9-28.

Doolittle RF (1995) The multiplicity of domains in proteins. Annu. Rev. Biochem. 64: 287–314

Evans W (2002) Pharmacognosy. W.B. Saunders, Reino Unido.

Faeth SH, Bultman TL (1986) Interacting effects of increased tannin levels on leaf-mining insects. Entomologia Experimentalis et Applicata 40: 297–300.

Feeny PP (1968) Effect of oak leaf tannins on larval growth of the winter moth Operophtera brumata. J. Insect Physiol. 14: 805–817.

Feeny PP (1970) Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51: 565–581.

Forkner RE, Marquis RJ, Lill JT (2004) Feeny revisited: condensed tannins as anti-herbivore defences in leaf-chewing herbivore communities of Quercus. Ecol. Entomol. 29: 174–187.

Fritz RS, Hochwender CG, Lewkiewicz DA, Bothwell S, Orians CM (2001) Seedling herbivory by slugs in a willow hybrid system: developmental changes in damage, chemical defense, and plant performance. Oecologia 129: 87–97

Grundhöfer P, Niemetz R, Schilling G, Gross GG (2001) Biosynthesis and subcellular distribution of hydrolyzable tannins. Phytochemistry 57: 915–927.

Hagerman AE, Butler LG (1991) Tannins and lignins. In GA Rosenthal, M Berenbaum (eds.), Herbivores: Their Interactions with Secondary Plant Metabolites. 2nd edn, Academic Press, New York, pp 355–388.

Harborne JB (1988) Introduction to ecological biochemistry. Third Edition. Academic Press New York.

Harborne JB, Williams CA (2000) Advances in flavonoid research since (1992) Phytochemistry 55: 481–504

Harding SA, Jiang HY, Jeong ML, Casado FL, Lin HW, Tsai CJ (2005) Functional genomics analysis of foliar condensed tannin and phenolic glycoside regulation in natural cottonwood hybrids. Tree Physiol. 25: 1475–1486.

Haslam E (2007) Vegetable tannins – Lessons of a phytochemical life- time. Phytochemistry 68: 2713–2721

Heil M, Ibarra-Laclette E, Adame-Álvarez RM, Martínez O, Ramírez- Chavez E, Molina-Torres J, Herrera-Estrella L (2012) How plants sense wounds: damaged-self recognition is based on plant-derived elicitors and induces Octadecanoid signaling. PLoS ONE 7: e30537

Hemming JDC, Lindroth RL (1999) Effects of light and nutrient availability on aspen: growth, phytochemistry, and insect performance. Journal of Chemical Ecology. 25: 1687–1714.

Hofmann T, Glabasnia A, Schwartz B, Wisman KN, Gangwer KA, Hagerman AE (2006) Protein binding and astringent taste of a polymeric procyanidin, 1, 2, 3, 4,6-penta-O-galloyl-b-D-glucopyra- nose, castalagin, and grandinin. J Agric Food Chem 54: 9503–9509

Hunter MD, Schultz JC (1995) Fertilization mitigates chemical induction and herbivore responses within damaged oak species. Ecology 76: 1226–1232.

Kao YY, Harding SA, Tsai CJ (2002) Differential expression of two distinct phenylalanine ammonia-lyase genes in condensed tannin-accumulating and lignifying cells of quaking aspen. Plant Physiol. 130: 796–807

Kilkowski WJ, Gross GG (1999) Color reaction of hydrolysable tannins with Bradford reagent, Coomassie brilliant blue. Phytochemistry 51: 363–366

Kirk H, Macel M, Klinkhamer PGL, Vrieling K (2004) Natural hybridization between Senecio jacobaea and Senecio aquaticus: molecular and chemical evidence. Mol Ecol 13: 2267–2274

Kobayashi K (2004) Factors affecting phytotoxic activity of allelochemicals in soil. Weed Biology. Management 4: 1-7.

Kopper, BJ, Jakobi VN, Osier TL, Lindroth, RL (2002) Effects of Paper Birch condensed tannin on Whitemarked Tussock moth (Lepidoptera: Lymantriidae) performance. Environmental Entomology 31: 10–14.

Kraus TEC,Yu Z, Preston CM, Dahlgren RA, Zasoski RJ (2003)Linking chemical reactivity and protein precipitation to structural characteristics of foliar tannins. Journal of Chemical Ecology. 29: 703–730.

Lavola A (1998) Accumulation of flavonoids and related compounds in birch induced by UV-B irradiance. Tree Physiol. 18: 53–58

Lawrence R, Potts BM, Whitham TG (2003)Relative importance of plant ontogeny, host genetic variation, and leaf age for a common herbivore. Ecology 84: 1171–1178

Lees GL, Suttill, NH, Gruber MY (1993) Condensed tannins in sainfoin (1) a histological and cytological survey of plant tissues. Can. J. Bot. 71: 1147–1152.

Lindroth RL, Batzli GO (1984) Plant phenolics as chemical defenses: Effects of natural phenolics on survival and growth of prairie voles (Microtus ochrogaster). Journal of Chemical Ecology 10(2): 229-244. doi:10.1007/BF00987851

Maldonado-López Y, Cuevas-Reyes P, González-Rodríguez A, Pérez-López G, Acosta-Gómez C, Oyama K (2015) Relationships among plant genetics, phytochemistry and herbivory patterns in Quercus castanea across a fragmented landscape. Ecological Research 30: 133-143. doi:10.1007/s11284-014-1218-2

Maldonado-López Y, Espinoza-Olvera NM, Pérez-López G, Quesada-Béjar V, Oyama K González-Rodríguez A, Cuevas-Reyes P (2013) Interacciones antagónicas especialistas en encinos: el caso de los insectos inductores de agallas. Biológicas 17: 32-41.

Mann J (1987) Secondary metabolism. Clerendon Press. Oxford.

McGarvey DJ, Croteau R (1995) Terpenoid metabolism. The Plant Cell 7: 1015-1026.

Mellway RD, Tran LT, Prouse MB, Campbell MM, Constabel CP (2009) The wound-, pathogen-, and ultraviolet B-responsive MYB134 gene encodes an R2R3 MYB transcription factor that regulates proanthocyanidin synthesis in poplar. Plant Physiology 150: 924-941. doi:10.1104/pp.109.139071

Mila I, Scalbert A, Expert D (1996) Iron withholding by plant polyphenols and resistance to pathogens and rots. Phytochem. 42: 1551–1555

Moctezuma C, Hammerbacher A, Heil M, Gershenzon J, Méndez-Alonzo R, Oyama K (2014) Specific Polyphenols and Tannins are Associated with Defense against Insect Herbivores in the Tropical Oak Quercus oleoides. Journal Chemical Ecology 40: 458–467.

Moilanen J, Salminen JP (2008) Ecologically neglected tannins and their biologically relevant activity: chemical structures of plant ellagitannins reveal their in vitro oxidative activity at high pH. Chemoecology 18: 73–83.

Mole S (1993) The systematic distribution of tannins in the leaves of angiosperms: a tool for ecological studies. Biochemical Systematics and Ecology 21: 833–846.

Neilson EH, Goodger JQD, Woodrow IE, Møller BL (2013) Plant chemical defense: at what cost? Trends in Plant Science 18: 250-258. doi:10.1016/j.tplants.2013.01.001

Nishida R (2002) Sequestration of defensive substances from plants by Lepidoptera. Annu Rev Entomol 47: 57–92

Nykänen H, Koricheva J (2004) Damage-induced changes in woody plants and their effects on insect herbivore performance: a meta-analysis. Oikos 104: 247–268.

O’Reilly-Wapstra JM, Potts BM, McArthur C, Davies NW, Tilyard P (2005) Inheritance of resistance to mammalian herbivores and of plant defensive chemistry in a Eucalyptus species. Journal of Chemical Ecology 31: 519–537

Okuda T, Yoshida T, Hatano T (1993) Classification of oligomeric hydrolysable tannins and specificity of their occurrence in plants. Phytochemistry 32: 507–521

Orians CM (2000) The effects of hybridization in plants on secondary chemistry: implications for the ecology and evolution of plant-herbivore interactions. Am J Bot 87: 1749–1756

Osier TL, Lindroth RL (2006) Genotype and environment determine allocation to and costs of resistance in quaking aspen. Oecologia 148: 293–303.

Pearse IS (2011) Leaf defensive traits in oaks and their role in both preference and performance of a polyphagous herbivore, Orgyia vetusta. Ecol. Entomol. 36: 635–642.

Pérez-López G, González-Rodríguez A, Oyama K, Cuevas-Reyes P (2016) Effects of plant hybridization on the structure and composition of a highly rich community of cynipid gall wasps: the case of the oak hybrid complex Quercus magnoliifolia x Quercus resinosa in Mexico. Biodiv. Conserv. 25: 633-651.

Peters DJ, Constabel CP (2002) Molecular analysis of herbivore induced condensed tannin synthesis: cloning and expression of dihydroflavonol reductase from trembling aspen (Populus tremuloides). Plant J. 32: 701–712.

Pichersky E, Gang DR (2000) Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends in Plant Science 5: 439–445

Rehman F, Khan FA, Badruddin SMA (2012) Role of Phenolics in Plant Defense Against Insect Herbivory. In LD Khemani, MM Srivastava, S Srivastava (eds), Chemistry of Phytopotentials: Health, Energy and Environmental Perspectives. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 309-313.

Rice EL (1984) Allelophatic. Academic Press, Orlando, Florida.

Rieseberg LH, Ellstrand NC (1993) What can molecular and morphological markers tell us about plant hybridization. Crit Rev Plant Sci. 12: 213–241

Robbins CT, Hanley TA, Hagerman AE, Hjeljord O, Baker DL, Schwartz CC, Mautz WW (1987) Role of tannins in defending plants against ruminants: reduction in protein availability. Ecology 68: 98–107.

Roitto M, Rautio P, Markkola A, Julkunen-Tiitto R, Varama M, Saravesi K, Tuomi J (2009) Induced accumulation of phenolics and sawfly performance in Scots pine in response to previous defoliation. Tree Physiol. 29: 207–216.

Rossi AM, Stiling P, Moon DC, Cattell MV, Drake BG (2004) Induced defensive response of myrtle oak to foliar insect herbivory in ambient and elevated CO2. Journal of Chemical Ecology 30: 1143–1151.

Rossiter MC, Schultz JC, Baldwin IT (1988) Relationships among defoliation, Quercus rubra phenolics, and gypsy moth growth and reproduction. Ecology 69: 267–277.

Ryan KG, Swinny EE, Markham KR, Winefield C (2002) Flavonoid gene expression and UV photoprotection in transgenic and mutant Petunia leaves. Phytochemistry 59: 23–32.

Salminen J-P, Karonen M (2011) Chemical ecology of tannins and other phenolics: we need a change in approach. Functional Ecology 25: 325-338. doi:10.1111/j.1365-2435.2010.01826.x

Salminen J-P, Lempa K (2002) Effects of hydrolysable tannins on an herbivorous insect: fate of individual tannins in insect digestive tract. Chemoecology 12: 203–211.

Salminen J-P, Roslin T, Karonen M, Sinkkonen J, Pihlaja K, Pulkkinen P (2004) Seasonal variation in the content of hydrolysable tannins, flavonoid glycosides and proanthocyanidins in oak leaves. Journal of Chemical Ecology 30: 1693–1711.

Scalbert A, Duval L, Peng S, Monties B, du Penhoat C (1990) Polyphenols of Quercus robur L. IIa. Preparative isolation by low-pressure and high-pressure liquid chromatography of heartwood ellagitannins. Journal of Chromatography A 502: 107-119.

Schultz JC, Nothnagle PJ, Baldwin IT (1982) Seasonal and individual variation in leaf quality of two northern hardwoods tree species. American Journal of Botany 69: 753–759.

Schultz JC (1989) Tannin–insect interactions. In RW Hemingway, JJ Karchesy (eds), Chemistry and significance of condensed tannins. Plenum Press, New York, New York, USA, pp 417-433.

Skogsmyr I, Fagerström T (1992) The Cost of Anti-Herbivory Defence: An Evaluation of Some Ecological and Physiological Factors. Oikos 64(3): 451-457.

Somerville C, Somerville S (1999) Plant functional genomics. Science 285: 380–383.

Sosa T, Chaves N, Alías JC, Escudero JC, Henao F, Guitiérrez-Merino C (2004) Inhibition of mouth skeletal muscle relaxation by flavonoids of Citus ladanifer L.; a plant defense mechanism against herbivores. Journal of Chemical Ecology 30: 1087-1101.

Stevens MT, Lindroth RL (2005) Induced resistance in the indeterminate growth of aspen (Populus tremuloides). Oecologia 145: 298–306

Strack D (1997) Phenolic metabolism. Plant biochemistry, pp 388-416.

Taiz I, Lincoln L, Geiger E (2006) Secondary Metabolites and Plant defense. Plant Physiology, Fourth Edition (Capítulo 13).

Tian L, Kong WF, Pan QH, Zhan JC, Wen PF, Chen JY, Wan SB, Huang WD (2006) Expression of the chalcone synthase gene from grape and preparation of an anti-CHS antibody. Protein Expres. Purif. 50: 223-228.

Ubi BE, Honda C, Bessho H, Kondo S, Wada M, Kobayashi S, Moriguchi T (2006) Expression analysis of anthocyanin biosynthetic genes in apple skin: effect of UV-B and temperature. Plant Sci. 170: 571-578.

Vázquez-Flores AAE, Álvarez-Parrilla JA, López-Díaz A, Wall-Medrano, L De la Rosa (2012) Taninos hidrolizables y condensados: naturaleza química, ventajas y desventajas de su consumo. Tecnociencia Chihuahua 6: 84-93.

Wang J, Pichersky E (1999) Identification of specific residues involved in substrate discrimination in two plant O-methyltransferases. Arch. Biochem. Biophys. 368: 172–180

Ward D, Young TP (2002) Effects of large mammalian herbivores and ant symbionts on condensed tannins of Acacia drepanolobiumin Kenya. Journal of Chemical Ecology 28: 921–93.

Whittaker RH, Feeny PP (1971) Allelochemics: chemical interactions between species. Science 171: 757-770

Xie DY, Dixon RA (2005) Proanthocyanidin biosynthesis: still more questions than answers? Phytochemistry 66: 2127-2144.

Yarnes CT, Boecklen WJ, Salminen JP (2008) No simple sum: seasonal variation in tannin phenotypes and leaf-miners in hybrid oaks. Chemoecology 18: 39–51

Yarnes CT, Boecklen WJ, Tuominen K, Salminen JP (2006) Defining phytochemical phenotypes: size and shape analysis of phenolic compounds in oaks (Fagaceae, Quercus) of the Chihuahuan desert. Can. J. Bot. 84: 1233–1248.

Zobel AM, Lynch JM (1997) Extrusion of UV-A absorbing phenolics in Hacer spp. in response to UV and freezing temperature. Allelopathy Journal 4: 269-276.

Zucker WV (1983) Tannins: does structure determine function? An ecological perspective. American Naturalist 121: 335–365.