Patrones de depredación de bellotas en especies del género <em>Quercus</em> (Fagaceae) a lo largo de un gradiente altitudinal en el Volcán de Tequila, Jalisco
PDF

Palabras clave

patrones
depredación
gradiente altitudinal
encinos
bellotas

Resumen

Se determinaron los patrones de depredación de bellotas en encinos que ocurren a lo largo de un gradiente altitudinal en el Volcán de Tequila, Jalisco. Se seleccionaron al menos 15 individuos reproductivos para cada una de las ocho especies incluidas en este estudio, siendo georreferenciados cada uno. Para la determinación de la depredación pre-dispersión se colectaron tres ramas del dosel en estado reproductivo para cada uno de los estratos del dosel arbóreo: superior, medio e inferior, eligiendo de cada rama de manera aleatoria un total de 50 bellotas (450 por individuo). Para la determinación de la depredación post-dispersión se colocaron tres cuadrantes de 1 m2 y en cada uno se colectaron aleatoriamente 450 bellotas o menos, acorde a la disponibilidad presente. En laboratorio se determinó el porcentaje de bellotas depredadas por invertebrados y por vertebrados. En nuestros resultados encontramos una relación negativa entre la altitud y el porcentaje de depredación de bellotas en las especies de encinos que ocurren a lo largo del gradiente altitudinal. Además se encontró que los niveles de depredación post-dispersión fueron mayores que los de pre-dispersión. También encontramos que las bellotas fueron más depredadas por invertebrados que por vertebrados. Por último, demostramos que las bellotas de encinos blancos son más depredadas que las de los encinos rojos. Nuestros resultados sugieren la hipótesis de que la variación en las condiciones abióticas como la temperatura y humedad presentes a lo largo del gradiente altitudinal podrían afectar los patrones de depredación de bellotas de encinos que ocurren en este gradiente. Mecanismos “bottom up” como la defensa química de bellotas pueden estar asociados a los patrones encontrados.

PDF

Citas

Arizaga S, Martínez-Cruz J, Salcedo-Cabrales M, Bello-González MÁ (2009) Manual de la biodiversidad de encinos michoacanos. Instituto Nacional de Ecología (INE-Semarnat), D. F., México. 147 p.

Baker HG (1972) Seed Weight in Relation to Environmental Conditions in California. Ecology 53: 997–1010.

Briggs JC (1987) Introduction: The Development of The Science. In JC Briggs (ed), Developments in Palaeontology and Stratigraphy, Vol 10. Elsevier, pp 1-13.

Brown JH, Lomolino MV (1998) Biogeography, Ed 2nd. Sinauer Associates, Inc., Sunderland, Massachusetts. 691 p.

Cardillo M (2002) The life-history basis of latitudinal diversity gradients: how do species traits vary from the poles to the equator? Journal of Animal Ecology 71: 79–87.

Craw RC, Grehan JR, Heads MJ (1999) Panbiogeography: tracking the history of life. Oxford University Press, New York. 240 p.

Cowling RM, Samways MJ (1995) Predicting global patterns of endemic plant species richness. Biodiversity letters 2: 127–131.

Crawley MJ (2000) Seed predators and plant population dynamics. In M Fenner (ed), Seeds: the ecology of regeneration in plant communities. CABI Publishing, Oxford, pp 167-181.

Cuevas-Reyes P, Oyama K, González-Rodríguez A, Fernandes GW, Mendoza-Cuenca L (2011) Contrasting herbivory patterns and leaf fluctuating asymmetry in Heliocarpus pallidus between different habitat types within a Mexican tropical dry forest. Journal of Tropical Ecology 27: 383–391.

Cuevas-Reyes P, Quesada M, Hanson P, Dirzo R, Oyama K (2004) Diversity of gall-inducing insects in a Mexican tropical dry forest: the importance of plant species richness, life-forms, host plant age and plant density. Journal of Ecology 92: 707–716.

Culver SJ, Buzas MA (2000) Global latitudinal species diversity gradient in deep-sea benthic foraminifera. Deep-Sea Research 47: 259–275.

Currie DJ (1991) Energy and Large-Scale Patterns of Animal- and Plant-Species Richness. The American Naturalist 137: 27–49.

Davidowitz G, Rosenzweig ML (1998) The latitudinal gradient in species diversity among North American grass-hoppers (Acrididae) within a single habitat: a test of the spatial heterogeneity hypothesis. Journal of Biogeography 26: 533–560.

Diniz-Filho JAF, De Sant’Ana CER, De Souza MC, Rangel TFLVB (2002) Null models and spatial patterns of species richness in South American birds of prey. Ecology Letters 5: 47-55

Ellison AM (2002) Macroecology of mangroves: large-scale patterns and processes in tropical coastal forests. Trees 16: 181-194.

Espelta JM, Cortés P, Molowny-Horas R, Retana J (2009) Acorn crop size and pre-dispersal predation determine inter-specific differences in the recruitment of co-occurring oaks. Oecologia 161: 559–568.

Gaston KJ (2000) Global patterns in biodiversity. Nature 405: 220–227.

Gentry AH (1988) Changes in Plant Community Diversity and Floristic Composition on Environmental and Geographical Gradients. Annals of the Missouri Botanical Garden 25: 1–34.

González-Villarreal LM (1986) Contribucion al conocimento del genero Quercus (Fagaceae) en el Estado de Jalisco. Instituto de Botanica, Universidad de Guadalajara, Guadalajara, Jalisco. 240 p.

Grytnes JA (2003) Species-richness patterns of vascular plants along seven altitudinal transects in Norway. Ecography 26: 291–300.

Hammond DS (1995) Post-dispersal seed and seedling mortality of tropical dry forest trees after shifting agriculture, Chiapas, Mexico. Journal of Tropical Ecology 11: 295–313.

Heaney LR (2001) Small mammal diversity along elevational gradients in the Philippines: an assessment of patterns and hypotheses. Global Ecology and Biogeography 10: 15–39.

Hernández-Calderón E, González-Rodríguez A, Méndez-Alonso R, Vega-Peña E, Oyama K (2013) Contrasting leaf phenology in two white oaks, Quercus magnoliifolia and Quercus resinosa, along an altitudinal gradient in Mexico. Can. J For. Res. 43: 208–213.

Hernández-Calderón E, Méndez-Alonso R, Martínez-Cruz J, González-Rodríguez A, Oyama K (2014) Altitudinal changes in tree leaf and stem functional diversity in a semi-tropicalmountain. Journal of Vegetation Science 25: 955–966.

Hillebrand H (2004) On the generality of the latitudinal diversity gradient. Am. Nat. 163: 192–211.

Hillyer R, Silman MR (2010) Changes in species interactions across a 2.5 km elevation gradient: effects on plant migration in response to climate change. Global Change Biology 16: 3205–3214.

Holloway JD, Nielsen ES (1999) Biogeography of the Lepidoptera. In N Kristensen (ed), Lepidoptera, moths and butterflies, Vol 1: Evolution, Systematics and Biogeography. De Gruyter, Berlin, pp 423-462.

Hubbell SP (1980) Seed predation and the coexistence of tree species in tropical forests. Oikos 35: 214–229.

Hulme PE (1993) Post-dispersal seed predation by small mammals. Symposium of the Zoological Society of London 65: 269–287.

Hulme PE, Benkman CW (2001) Granivory. In CM Herrera, O Pellmyr (eds), Plant Animal Interactions. Blackwell Science, Oxford, UK, pp 132-154.

Jacobsen D, Schultz R, Encalada A (1997) Structure and diversity of stream macroinvertebrates assemblages: the effect of temperature with altitude and latitude. Freshwat. Biol. 38: 247–261.

Janzen DH (1971) Seed predation by Animals. Annual Review of Ecology and Systematics 2: 465–492.

Kaufman DM (1995) Diversity of New World Mammals: Universality of the Latitudinal Gradients of Species and Bauplans. Journal of Mammalogy 76: 322–334.

Kelrick MI, Macmahon JA, Parmenter RR, Sisson DV (1986) Native seed preferences of shrub-steppe rodents, birds and ants: the relationship of seed attributes and seed use. Oecologia 68: 327–337.

Kessler M (2001) Patterns of diversity and range size of selected plant groups along an elevational transect in the Bolivian Andes. Biodiversity and Conservation 10: 1897–1921.

Kiester AR (1971) Species density of North American amphibians and reptiles. Syst. Zool. 20: 127–137.

Kocher SD, Williams EH (2000) The diversity and abundance of North American butterflies vary with habitat disturbance and geography. Journal of Biogeography 27: 785–794.

Körner C (2000) Why are there global gradients in species richness? Mountains may hold the answer. Trends in Ecology and Evolution 15: 513–514.

Kumar R, Singh M (1984) Tannins: their adverse role in ruminant nutrition. J. Agricult. Food Chem. 32: 447–453.

Levesquea KR, Fortina M, Mauffette Y (2002) Temperature and food quality effects on growth, consumption and post-ingestive utilization eficiencies of the forest tent caterpillar Malacosoma disstria (Lepidoptera: Lasiocampidae). Bulletin of Entomological Research 92: 122–137.

Lobo JM (2000) Species diversity and composition of dungbeetle (Coleoptera: Scarabaeoidea) assemblages in North America. Canadian Entomologist 132: 307–321.

Louda SM (1989) Predation in the dynamics of seed regeneration. In MA Leck, VT Parker, RL Simpson (eds), Ecology of Soil Seed Banks. Academic Press, San Diego, pp 25–51.

Lyons SK, Willig MR (2002) Species richness, latitude, and scale sensivity. Ecology 83: 47–58.

Manos PS, Doyle JJ, Nixon KC (1999) Phylogeny, biogeography, and processes of molecular differentiation in Quercus subgenus Quercus (Fagaceae). Molecular Phylogenetics and Evolution 12: 333–349.

Matsuyama T (1982) Tree seeds. Hosei Univ. Press, Tokyo. 371 p.

Mauchline L, Watson SJ, Brown VK, Froud-Williams J (2005) Post-dispersal seed predation of non-target weeds in arable crops. Weed Research 45: 157–164.

Myers AA, Giller PS (1998) Process, pattern and scale in biogegraphy. In AA Myers, PS Giller (eds), Analytical biogegraphy: an integrated approch to the study of animal and plant distributions. Chapman & Hall, London, UK, pp 3-12.

Myster RW, Pickett STA (1993) Effects of litter, distance, density and vegetation patch type on postdispersal tree seed predation in old fields. Oikos 66: 381–388.

Nathan R, Muller-Landau HC (2000) Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends in Ecology and evolution 15: 278–285.

Ofcarcik RP, Burns EE (1971) Chemical and physical properties of selected acorns. J. Food Sci. 36: 576–578.

Pérez-López SP (2009) Patrones de depredación de semillas de Quercus castanea Neé (Fagaceae) en bosque fragmentado de la Cuenca de Cuitzeo, Michoacán, México. Tesis. Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, 102 p.

Poveda K, Martínez E, Kersch-Becker MF, Bonilla MA (2012) Landscape simplification and altitude affect biodiversity, herbivory and Andean potato yield. Journal of Applied Ecology 513–522.

Rahbek C (1995) The elevational gradient of species richness: a uniform pattern? Ecography 18: 200–205.

Reed AW, Kaufman GA, Kaufman DW (2004) Influence of fire, topography, and consumer abundance on seed predation in tallgrass prairie. Can. J. Zool. 82: 1459–1467.

Rex M, Stuart CT, Hessler RR, Allen JA, Sanders HL, Wilson GDF (1993) Global scale latitudinal patterns of species diversity in the deep-sea benthos. Nature 365: 636–639.

Reynoso-Dueñas JJ (2010) Guía de excursión botánica al pueblo y Volcán de Tequila. In Ramírez-Delgadillo, R, JJ Reynoso-Dueñas, A Rodríguez-Contreras (eds.), Guías de las excursiones botánicas en Jalisco. XVIII Congreso Mexicano de Botánica. Universidad de Guadalajara. Sociedad Botánica de México. Universidad Autónoma Metropolitana, Guadalajara, Jal., México. pp. 17–36.

Robertson AL, Giddins R, Smith J (1990) Seed predation by insects in tropical mangrove forests: extent and effects on seed viability and the growth of seedlings. Oecologia 83: 213-219.

Sang W (2009) Plant diversity patterns and their relationships with soil and climatic factors along an altitudinal gradient in the middle Tianshan Mountain area, Xinjiang, China. Ecological Research 24: 303–314.

SAS (2000) Categorical data analysis using the SAS system. Cary, North Carolina, USA: SAS Institute.

Schall JJ, Pianka ER (1978) Geogrphical Trends in Number of Species. Science 201: 679–686.

Sharma CM, Suyal S, Gairola S, Ghildiyal SK (2009) Species richness and diversity along an altitudinal gradient in moist temperate forest of Garhwal Himalaya. Journal of American Science 5: 119–128.

Steele MA (2008) Evolutionary interactions between tree squirrels and trees: A review and synthesis. Current Science 95: 871–876.

Taylor JD, Taylor CN (1977) Latitudinal distribution of predatory gastropods on the eastern Atlantic shelf. Journal of Biogeography 4: 73–81.

Thomas DW, Samson S, Bergeron JM (1988) Metabolic costs associated with the ingestion of plant phenolics by Microtus pennsylvanicus. J. Mammal. 69: 512–515.

Ueda A (2000) Pre- and Post-dispersal damage to the acorns of two oak species (Quercus serrata Thunb. and Q. mongolica Fischer) in a species-rich deciduous forest. J. For. Res. 5: 169–174.

Valencia AS (2004) Diversidad del género Quercus (Fagaceae) en México. Bol. Soc. Bot. Méx. 75: 33–53.

Vander WSB, Kuhn KM, Beck MJ (2005) Seed removal, seed predation, and secondary dispersal. Ecology 86: 801–806.

Whittaker JB, Tribe NP (1998) Predicting numbers of an insect (Neophilaenus lineatus: Homoptera) in a changing climate. Journal of Animal Ecology 67: 987–991.

Willing MR, Kaufman DM, Stevens RD (2003) Latitudinal gradients of biodiversity: pattern, process, scale and synthesis. Annu. Rev. Ecol. Evol Syst. 34: 273–309.

Wolda H (1987) Altitude, habitat and tropical insect diversity. Biol. J. Linn. Soc. 30: 313–323.

Zhang J, Drummond FA, Liebman M, Hartke A (1997) TB163: Insect Predation of Seeds and Plant Population Dynamics. Maine Agricultural and forest experiment station 2: 5–25.

Zucker WV (1983) Tannins: does structure determine function? An ecological perspective. Am. Nat. 121: 335–365