Funciones biológicas de los compuestos orgánicos volátiles de hongos
PDF

Palabras clave

Hongos
volátiles
crecimiento vegetal
bioestimulación

Resumen

Los organismos pueden comunicarse a través de compuestos orgánicos volátiles (COVs), los cuales al ser percibidos generan una respuesta fisiológica. Los COVs son moléculas de bajo peso molecular, que se encuentran en forma de vapor a presión y temperatura ambiente y se sintetizan a través de múltiples rutas metabólicas. A los COVs se le han atribuido diversas funciones en los ecosistemas, en eucariontes para encontrar parejas o responder a condiciones desfavorables y entre bacterias funcionan como moléculas inductoras de la expresión génica. Los hongos han colonizado prácticamente toda clase de hábitats y sus moléculas pueden ser percibidas para alejar a depredadores, incluso algunos poseen actividad bactericida o antifúngica. Recientemente, el interés en el estudio de sus volátiles se ha incrementado, debido a su efecto promotor del crecimiento en múltiples especies vegetales, lo cual los hace candidatos para un posible uso biotecnológico en la agricultura e industria, y con ello, disminuir el uso de agroquímicos y pesticidas.

PDF

Citas

Beltran-Garcia M., Estarron-Espinosa M. y Ogura T. 1997. Volatile compounds secreted by the oyster mushroom (Pleurotus ostreatus) and their antibacterial activities. J Agric Food Chem. 45:4049–4052.

Bennett J., Hung R., Lee S. y Padhi, S. 2012. Fungal and bacterial volatile organic compounds: an overview and their role as ecological signaling agents. P. 373–393. En Fungal Associations (B. Hock Ed.). Springer-Verlag. Berlin, Heidelberg.

Berendsen R., Pieterse C. y Bakker P. 2012. The rhizosphere microbiome and plant health. Trends Plant Sci. 17:478-486.

Bitas V., Kim H.-S., Bennett J. y Kang S. 2013. Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. Mol Plant Microbe In. 26: 835–843.

Brakhage A. y Schroeckh, V. 2011. Fungal secondary metabolites - Strategies to activate silent gene clusters. Fungal Genet Biol. 48:15–22.

Casarrubia S., Sapienza S., Fritz H., Daghino S., Rosenkranz M., Schnitzler J., Martin F., Perotto S. y Martino, E. 2016. Ecologically different fungi affect Arabidopsis development: contribution of soluble and volatile compounds. PLoS One, 11:1-23.

Castañeda-Uribe R. 2014. Determinación química de compuestos orgánicos volátiles de Pseudofusicoccum stromaticum. Tesis de maestría. Instituto de Investigaciones Químico Biológicas, Univ. Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, México. 37 pp.

Ditengou F., Müller A., Rosenkranz M., Felten J., Lasok H., Miloradovic van Doorn M., Legué V., Palme K., Schnitzer J. y Polle, A. 2015. Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nat Commun. 6:6279:1-9.

Effmert U., Kalderás J., Warnke R. y Piechulla B. 2012. Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol. 38:665–703.

Evangelisti E., Rey T. y Schornack, S. 2014. Cross-interference of plant development and plant-microbe interactions. Curr Opin Plant Biol. 20:118–126.

Farag M., Ryu C., Sumner L., y Paré P. 2006. GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry, 67:2262–2268.

Gabler F., Mercier J. Jiménez J. y Smilanick J. 2010. Integration of continuos biofumigation with Muscodor albus with pre-cooling fumigation with ozone or sulfur dioxide to control postharvest gray mold of table grapes. Postharvest Biol Tec. 55:78-84.

Garnica-Vergara A., Barrera-Ortiz S., Muñoz-Parra E., Raya-González J., Mendez-Bravo A., Macías-Rodriguez L., Ruiz-Herrera L. y López-Bucio, J. 2015. The volatile 6-pentyl-2 H -pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning. New Phytol. 209:1496-1512.

Gutiérrez-Luna F., López-Bucio J., Altamirano-Hernández J., Valencia-Cantero E., Reyes de la Cruz H. y Macías-Rodríguez L. 2010. Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis. 51:75–83.

Herrera J., Pizzolitto R., Zunino M., Dambolena J., y Zygadlo J. 2015. Effect of fungal volatile organic compounds on a fungus and an insect that damage stored maize. J Stored Prod Res. 62:74–80.

Hughes D. y Sperandio V. 2008. Inter-kingdom signalling: communication between bacteria and their hosts. Nat Rev Microbiol. 6:111–120.

Kai M., Haustein M., Molina F., Petri A., Scholz B., y Piechulla B. 2009. Bacterial volatiles and their action potential. Appl Microbiol Biot. 81: 1001–1012.

Kaiser R. 2006. Flowers and fungi use scents to mimic each other. Science. 311:806–808.

Kanchiswamy C., Malnoy M. y Maffei M. 2015. Bioprospecting bacterial and fungal volátiles for sustainable agricultura. Trends Plant Sci 20:206-211

Kanchiswamy C., Malnoy M. y Maffei M. 2015. Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front Plant Sci. 6:1-23.

Lee S., Yap M., Behringer G., Hung R. y Bennett J. 2016. Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biol Biotechnol. 3:1-7.

Li N., Alfiky A., Vaughan M., y Kang S. 2016. Stop and smell the fungi: fungal volatile metabolites are overlooked signals involved in fungal interaction with plants. Fungal Biol Rev. 30:134–144.

López-Bucio J., Pelagio-Flores R., Herrera-Estrella A. (2015). Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Scientia Horticulturae 196:109-123.

Minerdi D., Bossi S., Gullino M. y Garibaldi A. 2009. Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35. Environ Microbiol. 11:844–854.

Minerdi D., Bossi S., Maffei M., Gullino M. y Garibaldi A. 2011. Fusarium oxysporum and its bacterial consortium promote lettuce growth and expansin A5 gene expression through microbial volatile organic compound (MVOC) emission. FEMS Microbiol Ecol. 76:342–351.

Mitchell A., Strobel G., Moore E., Robison R. y Sears J. 2010. Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus. Microbiol. 156: 270–277.

Nabors M. 2005. Introducción a la Botánica. Ed. ADDISON-WESLEY. 744 pp.

Paul D. y Park K. 2013. Identification of volatiles produced by Cladosporium cladosporioides CL-1, a fungal biocontrol agent that promotes plant growth. Sensors. 13:13969–13977.

Pérez-Flores P., Valencia-Cantero E., Altamirano-Hernández J., Pelagio-Flores R., López-Bucio J., García-Juárez P. y Macías-Rodríguez L. 2017. Bacillus methylotrophicus M4-96 isolated from maize (Zea mays) rhizoplane increases growth and auxin content in Arabidopsis thaliana via emission of volatiles. Protoplasma. 1-13.

Ping L. y Boland W. 2004. Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends Plant Sci. 9:263–266.

Rowan D. 2011. Volatile metabolites. Metabolites. 1:41–63.

Roze L., Chanda A. y Linz J. 2011. Compartmentalization and molecular traffic in secondary metabolism: A new understanding of established cellular processes. Fungal Genet Biol. 48:35–48.

Schalchli H., Tortella G., Rubilar O., Parra L., Hormazabal E. y Quiroz A. 2014. Fungal volatiles: an enviromentally friendly tool to control pathogenica microorganisms in plants. Crit Rev Biotechnol. Early online:1-9.

Schmidt R., de Jager V., Zühlke D., Wolff C., Bernhardt J., Cankar K., Beekwilder J., van Ijcken W., Sleutels F., Boer W., Riedel K. y Garbeva P. 2017. Fungal volatile compounds induce production of the secondary metabolite Sodorifen in Serratia plymuthica PRI-2C. Sci Rep-UK, 7:862:1-14.

Singh S., Strobel G., Knighton B., Geary B., Sears J. y Ezra D. 2011. An endophytic Phomopsis sp. possessing bioactivity and fuel potential with its volatile organic compounds. Microb Ecol. 61:729–739.

Song G. y Ryu C. 2013. Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions. Int J Mol Sci. 14:9803-9819.

Splivallo R., Novero M., Bertea C., Bossi S. y Bonfante P. 2007. Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Phytol. 175:417–424.

Splivallo R., Ottonello S., Mello A. y Karlovsky P. 2011. Truffle volatiles: From chemical ecology to aroma biosynthesis. New Phytol. 189:688–699.

Vanstraelen M. y Benková E. 2012. Hormonal interactions in the regulation of plant development. Annu Rev Cell Dev Biol. 28:463-87.

Velázquez-Becerra C., Macías-Rodríguez L., López-Bucio J., Altamirano-Hernández J., Flores-Cortez I. y Valencia-Cantero E. 2011. A volatile organic compound analysis from Arthrobacter agilis identifies dimethylhexadecylamine, an amino-containing lipid modulating bacterial growth and Medicago sativa morphogenesis in vitro. Plant Soil. 339:329–340.

Velázquez-Becerra C., Macías-Rodríguez L., Lopéz-Bucio J., Flores-Cortez I., Santoyo G., Hernández-Soberano C. y Valencia-Cantero E. 2013. The rhizobacterium Arthrobacter agilis produces dimethylhexadecylamine, a compound that inhibits growth of phytopathogenic fungi in vitro. Protoplasma. 250:1251–1262.

Vespermann A., Kai M. y Piechulla B. 2007. Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl Environ Microb. 73:5639–5641.

Vita F., Taiti C., Pompeiano A., Bazihizina N., Lucarotti V., Mancuso S. y Alpi A. 2015. Volatile organic compounds in truffle (Tuber magnatum Pico): comparison of samples from different regions of Italy and from different seasons. Sci Rep-UK. 5:12629:1-14.

Weijers D. y Wagner D. 2016. Trasncriptional responses to the auxin hormone. Annu rev Plant Biol. 67:21.1-21.36.

Zaragoza-Camacho. 2014. Determinación química de compuestos orgánicos volátiles de Epicoccum nigrum. Tesis de maestría. Instituto de Investigaciones Químico Biológicas, Univ. Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, México. 43 pp.

Zhang F., Yang X., Ran W. y Shen Q. 2014. Fusarium oxysporum induces the production of proteins and volatile organic compounds by Trichoderma harzianum T-E5. FEMS Microbiol Lett, 359:116–123.

Zhang X., Li B., Wang Y., Guo Q., Lu X., Li S. y Ma P. 2013. Lipopeptides, a novel protein, and volatile compounds contribute to the antifungal activity of the biocontrol agent Bacillus atrophaeus CAB-1. App Microbiol Biot. 97:9525–9534.

Zhao L., Yang X., Li X., Mu W. y Liu F. 2011. Antifungal, insecticidal and herbicidal properties of volatile components from Paenibacillus polymyxa strain BMP-11. Agric Sci China. 10:728–736.