Función de los hongos micorrícicos arbusculares en la biorremediación de metales pesados
PDF

Palabras clave

metales pesados
hongos micorrícicos arbusculares
fitorremediación

Resumen

En esta revisión se examinan los mecanismos potenciales de los hongos micorrícicos arbusculares (HMA) y su papel en la simbiosis que forman con la mayoría de las plantas terrestres, así como su beneficio en la fitorremediación. Aunque muchos de los Metales Pesados (MP) son componentes esenciales de las funciones metabólicas para las plantas y presentan una biodisponibilidad dentro de los rangos de concentración apropiados, el exceso de MP en el ambiente (por ejemplo, en los suelos o los sistemas acuáticos), sin duda, causa efectos de toxicidad directa, y desequilibrios de la captura y disponibilidad de nutrientes. En consecuencia, el aumento de MP contaminantes proporciona un desafío ecológico considerable, resultado de los impactos directos e indirectos en la función de los ecosistemas. Se ha demostrado que la unión de metales con HMA puede reducir significativamente la absorción del exceso de metales potencialmente dañinos, lo que reduce la carga de estrés al metal para la planta que se refleja en la salud de la planta. La simbiosis MA en la fitorremediación de metales se relaciona de nuevo con el papel de la micorrizosfera en la estabilización de la matriz del suelo a través de la agregación de suelos inducida por micorrizas.

PDF

Citas

Alkorta I, Hernandez-Allica J, Becerril JM, Amezaga I, Albizu I, Garbisu C (2004) Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead and arsenic. Rev. Environ. Sci. Biotech. 3: 71-90.

Audet P (2014) Arbuscular Mycorrhizal Fungi and Metal Phytoremediation: Ecophysiological Complementarity in Relation to Environmental Stress. In P Ahmad, S Rasool (eds.), Emerging Technologies and Management of Crop Stress Tolerance Volume II A Sustainable approach. United State of America: Elsevier-Academic Press, pp 133-160.

Audet P (2012) AM symbiosis and other plant-soil interactions in relation to environmental stress. In P Ahmad, MNV Prasad (eds.), Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change. New York: Springer, pp 233-264.

Audet P, Charest C (2006) Effects of AM colonization on “wild tobacco” plants grown in zinc contaminated soil. Mycorrhiza. 16: 277-283.

Audet P, Charest C (2007a) Dynamics of AM symbiosis in heavy metal phytoremediation: meta analytical and conceptual perspectives. Environ. Pollut. 147: 609-614.

Audet P, Charest C (2007b) Heavy metal phytoremediation from a meta analytical perspective. Environ. Pollut. 147: 231-237.

Audet P, Charest C (2008) Allocation plasticity & metal partitioning: meta analytical perspectives in phytoremediation. Environ. Pollut. 156: 290-296.

Audet P, Charest C (2009) Contribution of AM symbiosis to in vitro root metal uptake: from trace to toxic metal conditions. Botany. 87: 913-921.

Audet P, Charest C (2010) Determining the impact of the AM mycorrhizosphere on “dwarf” sunflower Zn uptake and soil Zn bioavailability in a compartmental growth environment. J. Bot (2010) Article ID 268540, 11 p

Audet P, Charest C (2013) Assessing the AM mycorrhizosphere’s stratum of influence: plant metal uptake and soil metal bioavailability in a compartmental growth environment. Arch. Agron. Soil Sci. 59: 533-548.

Augé RM (2004) Arbuscular mycorrhizae and soil/plant water relations. Can. J. Soil Sci. 84: 373-381.

Beare MH, Coleman DC, Crossley DA, Hendrix PF, Odum EP (1995) A hierarchical approach to evaluating the significance of soil biodiversity and no-tillage ultisols. Plant Soil. 170: 5-22.

Bonfante P, Anca IA (2011) Plants, mycorrhizal fungi, and bateria: a network of interactions. Ann. Rev. Microbiol. 63: 363-386.

Boucher DH, James S, Keeler KH (1982) The ecology of mutualism. Ann. Rev. Ecol. Sys. 13: 315-347.

Cahill JF, McNickle GG (2011) The behavioral ecology of nutrient foraging in plants. Ann. Rev. Ecol. Evol. Syst. 42: 289-311.

Cavagnaro TR, Dickson RS, Smith FA (2010) Arbuscular mycorrhizas modify plant responses to soil zinc addition. Plant Soil. 329: 307-313.

Chalot M, Blaudez D, Brun A (2006) Ammonia: a candidate for nitrogen transfer at the mycorrhizal interface. Trends Plant Sci. 11: 263-266.

Christie P, Li XL, Chen BD (2004) Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant Soil. 261: 209-217.

Cleveland CC, Townsend AR, Schmidt SK (2002) Phosphorus limitation of microbial processes in moist tropical forests: evidence from short-term laboratory incubations and field studies. Ecosystems. 5: 680-691.

Corradi N, Charest C (2011) Some like it toxic. Mol. Ecol. 20: 3289-3290.

Del Val C, Barea JM, Azco´ n-Aguilar C (1999) Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soils. Appl Environ Microbiol. 65: 718–723.

Duponnois R, Galiana A, Prin Y (2008) The mycorrhizosphere effect: a multitrophic interaction complex improves mycorrhizal symbiosis and plant growth. In SZ Anwar, AM Sayeed, F Kazuyoshi (eds.), Mycorrhizae: Sustainable Agriculture and Forestry. Berlin: Springer, pp 227-240.

Eckhard G, Römheld V, Marschner H (1994) Contribution of mycorrhizal fungi to micronutrient uptake by plants. In J Manthey, DE Crowley, GL Luster (eds.), Biochemistry of Metal Micronutrients in the Rhizosphere. Boca Raton: CRC Press, pp 93-110.

Fitter AH, Helfason T, Hodge A (2011) Nutritional exchanges in the arbuscular mycorrhizal symbiosis: implications for sustainable agriculture. Fungal Biol. Rev. 25: 68-72.

Garbaye J (1991) Biological interactions in the mycorrhizosphere. Cell. Mol. Life. Sci. 47: 370-375.

George E, Marschner H, Jakobsen I (1995) Role of arbuscular-mycorrhizal fungi in uptake of phosphorus and nitrogen from soil. Crit. Rev. Biotech. 15: 257-270.

González-Guerrero M, Benabdellah K, Ferrol N, Azco´n-Aguilar C (2009) Mechanisms underlying heavy metal tolerance in arbuscular mycorrhizas. In C Azcón-Aguilar, JM Barea, S Gianinazzi, V Gianinazzi-Pearson (eds.), Mycorrhizas: Functional Processes and Ecological Impact. Berlin: Springer, pp 1-16.

Govindarajulu M, Pfeffer PE, Jin H, Douds DD, Allen JW, Bucking H (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435: 819-823.

Gaühre V, Pazkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Plant. 223: 1115-1122.

Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry. 68: 139-146.

Javot H, Pumplin N, Harrison MJ (2007) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ. 30: 310-322.

Jin H, Pfeffer PE, Douds DD, Piotrowski E, Lammers PJ, Shachar-Hill Y (2005) The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol. 168: 687-696.

Joner EJ, Briones R, Leyval C (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226: 227-234.

Koide RT (1991) Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytol.117: 365-386.

Koide RT (1993) Physiology of the mycorrhizal plant. Adv. Plant Pathol. 9: 33-54.

Leung TLF, Poulin R (2008) Parasitism, commensalism and mutualism: exploring the many shades of symbiosis. Vie Milieu. 58: 107-115.

Leyval C, Joner EJ, del Val C, Haselwandter K (2002) Potential of arbuscular mycorrhizal fungi for bioremediation. In S Gianinazzi, H Schuëpp, JM Barea, K Haselwandter (eds.), Mycorrhizal technology in agriculture: from genes to bioproducts. Birkhauser: Verlag, pp 175-186.

Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological, and applied aspects. Mycorrhiza. 7: 139-153.

Liu A, Hamel C, Hamilton RI, Ma BL, Smith DL (2000) Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza. 9: 331-336.

Marschner H (1995) Mineral Nutrition of Higher Plants. Second ed. Berlin : Springer.

Meharg AA, Cairney JWG (1999) Co-evolution of mycorrhizal symbionts and theirhosts to metal-contaminated environments. Adv Ecol Res. 30: 69-112.

Meier S, Borie F, Bolan N, Cornejo P (2012a) Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi. Crit. Rev. Environ. Sci. Tech. 42: 741-775.

Mengel K, Kosegarten H, Kirkby EA, Appel T (2001) Principles of Plant Nutrition. Berlin: Springer.

Miller RM, Jastrow JD (1990) Hierarchy of root and mycorrhizal fungal interactions with soil aggregation. Soil Biol. Biochem. 22: 579-584.

Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotech. Adv. 29: 645-653.

Newsham KK, Fitter AH, Watkinson AR (1995) Multi-functionality and biodiversity in arbuscular mycorrhizas.Trends Ecol. Evol. 10: 407-411.

Pawlowska TE, Charvat I (2004) Heavy-metal stress and developmental patterns of arbuscular mycorrhizal fungi. Appl Environ Microb. 70: 6643-6649.

Peterson LR, Massicotte HB, Melville LH (2004) Mycorrhizas: Anatomy and Cell Biology. Ottawa: NRC Research Press.

Piotrowski JS, Denich, T, Klironomos JN, Graham JM, Rillig MC (2004) The effects of arbuscular mycorrhizae on soil aggregation depend on the interaction between plant and fungal species. New Phytol. 164: 365-373.

Pongrac P, Vogel-Mikus K, Poschenrieder C, Barcelo J, Tolra R, Regvar M (2013) Arbuscular mycorrhiza in glucosinolate-containing plants: the story of the metal hyperaccumulator Noccaea (Thalspi) praecox (Brassicaceae). In FJ Bruijn (ed.), Molecular Microbial Ecology of the Rhizosphere. Vol. 2, New York: Wiley and Sons, pp 1023-1032.

Purin S, Rillig MC (2008) Parasitism of arbuscular mycorrhizal fungi: reviewing the evidence. FEMS Microbiol. Lett. 279: 8-14.

Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotech. Adv. 30: 1562-1574.

Rangel, WDM, Schneider J, Costa ETDS, Soares CRFS, Guilherme LRG, Moreira FMDS (2013) Phytoprotective effect of arbuscular mycorrhizal fungi species against arsenic toxicity in tropical leguminous species. Int. J. Phytorem. 16: 840-858.

Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289: 1920-1921.

Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc. Natl. Acad. Sci. U.S.A. 91: 11841-11843.

Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol. 171: 41-53.

Rillig MC, Mardatin NF, Leifheit EF, Antunes PM (2010) Mycelium of arbuscular mycorrhizal fungi increases soil water repellency and is sufficient to maintain water-stable soil aggregates. Soil Biol. Biochem. 42: 1189-1191.

Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol. 116: 447-453.

Schreiner RP, Koide RT (1993a) Antifungal compounds from the roots of mycotrophic and non-mycotrophic plant species. New Phytol. 123: 99–105.

Schreiner RP, Koide RT (1993b) Mustards, mustard oils and mycorrhizas. New Phytol. 123: 107–113.

Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol. Res. 105: 1413-1421.

Schwab SM, Menge JA, Tinker PB (1991) Regulation of nutrient transfer between host and fungus in vesicular-arbuscular mycorrhizas. New Phytol. 117: 387-398.

Van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396: 69-72.

Van der Heijden MGA, Wiemken A, Sanders IR (2003) Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-occurring plants. New Phytol. 157: 569-578.

Vilousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur. Biogeochemistry 13: 87-115.

Wardle DA, Barker GM, Bonner KI, Nicholson KS (1998) Can comparative approaches based on plant ecophysiological traits predict the nature of biotic interactions and individual plant species effects in ecosystems? J. Ecol. 86: 405-420.

Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol Article ID 402647, 20 p.

Zare-Maivan H (2013) Mycorrhizae adsorb and bioaccumulate heavy and radioactive metals. In EM Goltapeh, YR Danesh, A Varma (eds.), Fungi as Bioremediators. Berlin: Springer, pp 269-281.